Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 928: 172218, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38580109

RESUMEN

In natural habitats, especially in arid and semi-arid areas that are fragile ecosystems, vegetation degradation is one of the most important factors affecting the variability of soil health. Studying physicochemical and biological parameters that serve as indicators of soil health offers important information on the potential risk of land degradation and the progression of changes in soil performance and health during recovery periods. This study specifically examines the impact of vegetation degradation on soil health indicators and the duration needed to improve the physical, chemical, and biological parameters in a semi-arid mountainous area site types with the dominance of Quercus macranthera Fisch & C.A. Mey and Carpinus orientalis Miller in northern Iran. In different years (2003, 2013, and 2023), litter and soil samples (at depths of 0-10, 10-20, and 20-30 cm) were collected in different types of degraded sites. Additionally, in 2023, a non-degraded site was chosen as a control and similar samples were collected. A total of 48 litter (12 samples for each of the study site types) and 144 soil (4 study site types × 3 depths × 12 samples) samples were collected. In order to investigate the spatial changes of soil basal respiration (or CO2 emission), which is involved in global warming, from each site type, 50 soil samples were taken along two 250-meter transects. The findings showed that litter P and Mg contents in the non-degraded site were 1.6 times higher than in degraded site types (2003). Following vegetation degradation, soil fertility indicators decreased by 2-4 times. The biota population was lower by about 80 % under the degraded site types (2003) than in the non-degraded site, and the density of fungi and bacteria in the degraded site types was almost half that of the non-degraded site types. Geostatistics showed the high variance (linear model) of CO2 emissions in areas without degradation. In addition, vegetation degradation significantly reduced soil carbon and nitrogen mineralization. Although soil health indicators under the degraded vegetation have improved over time (30 years), results showed that even thirty years is not enough for the full recovery of a degraded ecosystem, and more time is needed for the degraded area to reach the same conditions as the non-degraded site. Considering the time required for natural restoration in degraded site types, it is necessary to prioritize the conservation of vegetation and improve the ecosystem restoration process with adequate interventions.


Asunto(s)
Restauración y Remediación Ambiental , Bosques , Suelo , Suelo/química , Clima , Ambiente , Irán , Quercus , Betulaceae , Tiempo , Biota , Conservación de los Recursos Naturales
2.
Sci Total Environ ; 896: 166341, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37597542

RESUMEN

The storage of municipal solid wastes in unengineered landfills poses a severe threat to soil functions and health. Wastes seriously threaten human health and the terrestrial ecosystem, especially due to heavy metals. There is a general knowledge gap about the long-term impacts of storage wastes on the soil health indicators which are effective on soil functions. This investigation focuses on the examination of landfill leachate on soil health indicators from different years in the Hyrcanian forest region in northern Iran. For this purpose, soil sampling was done in the summer of 2012 and 2022 (from three depths of 0-10, 10-20, and 20-30 cm and on a surface of 30 cm × 30 cm). Soil samples were randomly collected from a polluted forest used as waste storage and a nearby unpolluted protected forest. In addition to the general soil physical, chemical and biological parameters, the amounts of cadmium (Cd) and lead (Pb) in the soil were also measured. Simultaneously with soil sampling, earthworms (from a depth of 0-30 cm) were collected and identified. Also, the concentration of Cd and Pb in the earthworm's biomass were measured in the laboratory. We found that unpolluted sites had maximum values of N, K, P, and Ca than the polluted sites. In addition, a decrease of soil aggregates stability, nutrient contents, microbial and enzyme activities, and also fauna and microflora abundance were found in the polluted sites in the period 2012-2022. Soil Cd and Pb contents were more in the polluted site in 2022 compared to the unpolluted site. Lumbricus rubellus and Lumbricus terrestris earthworms had significantly higher population in the polluted sites and higher accumulation of Cd and Pb in biomass. According to our results, soil health decreased in the order unpolluted site 2022 > unpolluted site 2012 > polluted site 2012 > polluted site 2022, which corresponds with the reduction of soil health during the release of landfill leachate. This investigation contributes to understand landfill pollution derived from leachate and its effects on soil physical, chemical and biological parameters to help managing landfill leachate. Therefore, the main issue is choosing a landfill system that minimizes the risk of pollution, installing a leachate collection system and constructing a landfill with engineering principles that can reduce the effects of urban waste pollution on soil health. We emphasize that landfilling is dangerous for the environment, so the government should implement sanitary landfilling to prevent further contamination of surface and underground waters, as well as soil in the precious Hyrcanian forest.


Asunto(s)
Oligoquetos , Contaminantes Químicos del Agua , Humanos , Animales , Ecosistema , Cadmio , Irán , Plomo , Bosques , Suelo
3.
J Environ Manage ; 345: 118657, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37515882

RESUMEN

Soil quality and function in forest environments are influenced by the interaction of soil-forming parameters and silvicultural systems. Hyrcanian forests were recently accepted as a UNESCO World Heritage Site, which extends across an area of approximately 1.8 million hectares and ascend to an elevation of 2800 m above sea level (m.a.s.l). In these woodlands, Oriental Beech (Fagus orientalis Lipsky) is the predominant tree species and could be observed at 700-1500 m.a.s.l., and occur on different parent rocks. Shelterwood and single-tree selection techniques have been the primary management methods for beech forests for the past forty years. Studies investigating the impacts of silvicultural systems have not yet been done on soil and forest floor features on different bedrock geology and altitudes. Therefore, in this study, we examined the influence of single-tree selection and shelterwood methods, 25 years after employing those methods, on soil quality and function compared to control areas (intact forests) in Hyrcanian beech stands. For this purpose, 15 forest floor (30 × 30 cm) and topsoil (0-10 cm depth) samples in each silvicultural systems (i.e., single-tree selection and shelterwood methods and control zones) × 4 regions (including Rasht, Nowshahr, Sari and Gorgan) × 4 altitude levels (with averages of 800, 1000, 1200 and 1400 m.a.s.l.) were considered. According to our findings, the investigated forest regions, forest floor and soil characteristics across various locations spots could be separated by principal component analysis output, and more than 85% of the variance was explained by the first and second axes. The structural equation model showed that the region, altitude and silvicultural systems had an effective role in the changes in soil biological activities by influencing the forest floor, and the soil physicochemical features. Based upon the network model, the C/N ratio, the sand content, the soil aggregate stability, the available K, the fulvic acid, and the Acarina density were found to be prominent factors with regard to soil function. In the control sites, increased soil organic material fractions, microbial/enzyme and biota activities were detected, particularly at the lower altitudes of the Nowshahr site, which had geological formations of dolomite and calcic layers. Taken together, it seems that the single-tree method, commonly referred to as the close-to-nature technique produces more suitable conditions for soil functioning compared to the shelterwood management approach. Silvicultural systems, bedrock geology and altitude can have major detrimental effects on soil function and fertility, over the long-term, impacts may increase with harvest intensity.


Asunto(s)
Fagus , Suelo , Suelo/química , Altitud , Geología , Bosques , Biota
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...